|
1) |
f(x) = (2x+4)⋅(-4x4+7x3+3x2+7x) |
|
f'(x) = -40x4-8x3+102x2+52x+28 |
|
2) |
f(x) = (5x3-4x2)⋅(-3x4+4x2+8) |
|
f'(x) = -105x6+72x5+100x4-64x3+120x2-64x |
|
3) |
f(x) = | -4x4-2x3 | 2x4+7x3+2x-1 |
|
|
f'(x) = | -24x6-24x4+8x3+6x2 | (2x4+7x3+2x-1)2 |
|
|
4) |
f(x) = | -6x4+x3-5x2+5x-2 | -x |
|
|
f'(x) = | 18x4-2x3+5x2-2 | (-x)2 |
|
|
5) |
f(x) = | -5x4-2x3+7 | -x4+4x3+x2-6x |
|
|
f'(x) = | -22x6-10x5+88x4+52x3-84x2-14x+42 | (-x4+4x3+x2-6x)2 |
|
|
6) |
f(x) = | -x3-x2 | -3x4+6x3+4x2 |
|
|
f'(x) = | -3x6-6x5+2x4 | (-3x4+6x3+4x2)2 |
|
|
7) |
f(x) = | 4x4-3x3-5x2+5x+9 | 2x4+x2+3x |
|
|
f'(x) = | 6x6+28x5+3x4-90x3-20x2-18x-27 | (2x4+x2+3x)2 |
|
|
8) |
f(x) = (2x4-4x3+3x2-5x+3)⋅(x4-5x2+7x) |
|
f'(x) = 16x7-28x6-42x5+145x4-160x3+138x2-100x+21 |
|
9) |
f(x) = | 3x4+7x3-x+7 | -6x4-x3+8x2-x+8 |
|
|
f'(x) = | 39x6+48x5+29x4+248x3+197x2-112x-1 | (-6x4-x3+8x2-x+8)2 |
|
|
10) |
f(x) = (x2)⋅(-2x4-8) |
|
f'(x) = -12x5-16x |
|
11) |
f(x) = (1)⋅(-4x3-4x2+5) |
|
f'(x) = -12x2-8x |
|
12) |
f(x) = (-4)⋅(8x2+6x-1) |
|
f'(x) = -64x-24 |
|
13) |
f(x) = | -5x3-3x2+6 | -x4-5x2-5x |
|
|
f'(x) = | -5x6-6x5+25x4+74x3+15x2+60x+30 | (-x4-5x2-5x)2 |
|
|
14) |
f(x) = (5x2-4x+4)⋅(-2x3-6x+9) |
|
f'(x) = -50x4+32x3-114x2+138x-60 |
|
15) |
f(x) = (x4-3x3+6x2+x-9)⋅(5x4+3x3-2x) |
|
f'(x) = 40x7-84x6+126x5+105x4-144x3-117x2-4x+18 |
|
16) |
f(x) = (-5x4+x3+6x+1)⋅(x4+x3+8) |
|
f'(x) = -40x7-28x6+6x5+30x4-132x3+27x2+48 |
|
17) |
f(x) = (-x4+7x+4)⋅(2x4+4x3-7x2) |
|
f'(x) = -16x7-28x6+42x5+70x4+144x3-99x2-56x |
|
18) |
|
|
f'(x) = | -21x6+18x5+48x3 | (-x4+7x3-3x2-4)2 |
|
|
19) |
|
|
f'(x) = | 6x4-12x3+14x2-12 | (-x4+3x3-7x2-6)2 |
|
|
20) |
|
|
f'(x) = | -5x4-10x2 | (-x3+3x2+2x)2 |
|
|